Appendix A: Monograph Reviewers

Robert Adler, M.D.
Medical College of Virginia, VA, USA

Gisah Amaral de Carvalho, MD, Ph.D
Hospital de Clinicas, Universidade Federal do Parana, Brazil

Nobuyuki Amino, M.D.
Osaka University Graduate School of Medicine, Japan

Claudio Aranda, M.D.
Hospital Carlos G. Durand, Buenos Aires, Argentina

Jack H. Baskin M.D., F.A.C.E
Fla thyroid & Endocrine Clinic, Orlando, FL, USA

Graham Beastall, Ph.D
Edinburgh Royal Infirmary NHS Trust, Scotland, UK

Geoff Beckett Ph.D., F.R.C.Path
Edinburgh Royal Infirmary NHS Trust, Scotland, UK

Liliana Bergoglio, BSc.,
Cordoba, Argentina

Roger Bertholf, Ph.D., DABCC, FACB
University of Florida Health Science Center, Jacksonville, FL, USA

Thomas Bigos, M.D., Ph.D.
Maine Medical Center, USA

Manfred Blum, M.D.
New York University Medical Center, New York, NY, USA

Irv Bromberg, M.D., C.M.
Mount Sinai Hospital, Toronto, Ontario, Canada

Rosalind Brown, M.D.
University of Massachusetts Medical School, Worcester, MA, USA

Gisah Amaral de Carvalho, MD, Ph.D.,
Universidade Federal do Parana - Brazil

Bo Youn Cho
Asan Medical Center, Seoul, Korea

Orlo Clark, M.D.
UCSF/ Mount Zion Medical Center, San Francisco, CA, USA

Rhonda Cobin, M.D.
Midland Park, NJ, USA

David Cooper, M.D.
Sinai Hospital of Baltimore, Baltimore, MD, USA

Gilbert Cote, M.D.
UT MD Anderson Cancer Center, Houston, TX, USA

Marek Czarkowski, M.D.
Warsaw, Poland

Lawrence M. Demers, M.D.
Pennsylvania State School of Medicine, Hershey, PA, USA

Catherine De Micco, M.D.
University of the Mediterranea Medical School, Marseille, France

D. Robert Dufour, M.D.
VA Medical Center, Washington DC, USA

John Dunn, M.D.
University of Virginia Health Sciences Center, Charlottesville, VA, USA

Joel Ehrenkranz, M.D.
Aspen, CO, USA

David Endres, PhD,
Appendix B. - Newborn Screening Quality Assurance Programs

• Australasia - Australasian Quality Assurance Program, National Testing Center 2nd Floor, National Women’s Hospital, Claude Road, Epsom, Auckland, New Zealand.
• Europe - Deutsche Gesellschaft für Klinische Chemie eV, Im Muhlenbach 52a, D-53127 Bonn, Germany.
• United Kingdom External Quality Assurance Scheme, Wolfson EQA laboratory, PO Box 3909, Birmingham, B15 2UE, UK.
• USA- Centers for Disease Control and Prevention (CDC), 4770 Burford Highway NE, Atlanta, GA 30341-3724, USA.

(The UK NEQAS program has a charge to participants, but for the other two programs there is no charge).

Appendix C – Glossary of Abbreviations

AITD = Autoimmune Thyroid Disease
ANS = 8-Anilino-1-Naphthalene-Sulphonic Acid
ATD = Anti-Thyroid Drug Treatment
CT = Calcitonin
DTC = Differentiated Thyroid Carcinoma
FDH = Familial Dysalbuminemic Hyperthyroxinemia
FFA = Free Fatty Acids
FMTC = Familial Medullary Thyroid Carcinomas
FNA = Fine Needle Aspiration
FT3 = Free T3
FT4 = Free T4
HCG = Human chorionic gonadotropin
IMA = Immunometric Assay
L-T4 = Levothyroxine
MEN = Multiple Endocrine Neoplasia
MTC = Medullary Thyroid Carcinoma
NTI = Nonthyroidal Illness
Pg= Pentagastrins
RET = re Proto-oncogene
RIA = Radioimmunoassay
T4 = Thyroxine
T3 = Triiodothyronine
TBG = Thyroxine Binding Globulin
TBPA= Thyroxine Binding Prealbumin
TT4 = Total Thyroxine
TT3 = Total Triiodothyronine
TTR= Transthyretin
Tg = Thyroglobulin
TgAb = Thyroglobulin Autoantibody
TPO = Thyroid Peroxidase
TPOAb = Thyroid Peroxidase Autoantibody
TBAb/TSBAb = TSH Receptor Blocking Antibody
TBII = TSH Binding Inhibitory Immunoglobulins
TRAb = TSH Receptor Antibody
TSAb = Thyroid Stimulating Antibody
TSH = Thyroid Stimulating Hormone (Thyrotropin)

References

patients with subclinical hypothyroidism. J Clin Endocrinol Metab. 2064-7.


37. Penny R, Spencer CA, Frasier SD, et al. 1983. Thyroid stimulating hormone (TSH) and thyroglobulin (Tg) levels decrease with chronological age in children and adolescents. J Clin Endocrinol Metab. 56:177-80.


86. Surks MI, and Defesi CR. 1996. Normal free thyroxine concentrations in patients treated with phenytoin or carbamazepine: a paradox resolved. JAMA. 275:1495-.
106. Chopra IJ. 1998. Simultaneous measurement of free thyroxine and free 3,3',5'-triiodothyronine in undiluted serum by direct equilibrium dialysis/radioimmunoassay: evidence that free triiodothyronine and free thyroxine are normal in many patients with the low triiodothyronine syndrome. Thyroid. 8:249-57.

samples received for thyroid testing. Clin Chem. 37:1430-1.


and in vitro bioactivity of TSH. J Clin Endocrinol Metab. 80:1124-8.


219. Cooper DS, Specker B, Ho M, et al. 1999. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National thyroid Cancer Treatment Cooperative Registry. Thyroid. 8:737-.


234. Weiss RE, Hayashi Y, Nagaya T, et al. 1996. Dominant inheritance of resistance to thyroid hormone not linked to defects in the thyroid hormone receptors alpha or beta genes may be due to a defective co-factor. J Clin Endocrinol Metab. 81:4196-.


237. Beck-Peccoz P, and Chatterjee VKK. 1994. The variable clinical phenotype in thyroid hormone resistance syndrome. Thyroid. 4 (225-).


autoantibody to in vitro translated thyrotropin receptor: a comparison to radioreceptor assay and thyroid stimulating bioassay. Thyroid. 9:466-75.


309. Spencer CA. 1996. Recoveries cannot be used to authenticate thyroglobulin (Tg) measurements when sera contain Tg autoantibodies. Clin Chem. 42:661-3.


327. Dunn JT. 1994. When is a thyroid nodule a sporadic medullary carcinoma? J Clin Endocrinol Metab. 78:824-5.


two cases of de novo MEN2B. Oncogene. 15:1213-7.


